Advertisements
Advertisements
Question
If a matrix A is both symmetric and skew-symmetric, then
Options
A is a diagonal matrix
A is a zero matrix
A is a scalar matrix
A is a square matrix
Solution
A is a zero matrix
\[A = \left[ a_{ij} \right]\] be a matrix which is both symmetric and skew-symmetric.
If \[A = \left[ a_{ij} \right]\] is a symmetric matrix, then
\[a_{ij} = a_{ji}\] for all i, j ............(1)
If \[A = \left[ a_{ij} \right]\] is a skew-symmetric matrix, then
\[a_{ij} = - a_{ji}\]
\[\Rightarrow a_{ji} = - a_{ij}\] for all i,j ............(2)
From eqs. (1) and (2), we have
\[a_{ij} = - a_{ij} \]
\[ \Rightarrow a_{ij} + a_{ij} = 0 \]
\[ \Rightarrow 2 a_{ij} = 0 \]
\[ \Rightarrow a_{ij} = 0 \]
\[ \therefore A = \left[ a_{ij} \right] \text{is a zero matrix or null matrix} . \]
\[\]
APPEARS IN
RELATED QUESTIONS
if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'
If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that A'A = I
Show that the matrix A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(3,5),(1,-1)]`
If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.
Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.
If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.
For what value of x, is the matrix \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\] a skew-symmetric matrix?
If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is
If A and B are matrices of the same order, then ABT − BAT is a
Show that a matrix which is both symmetric and skew symmetric is a zero matrix.
If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.
If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.
If A and B are matrices of same order, then (AB′ – BA′) is a ______.
If A and B are symmetric matrices, then AB – BA is a ______.
If A and B are symmetric matrices, then BA – 2AB is a ______.
If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.
If A and B are any two matrices of the same order, then (AB)′ = A′B′.
If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.
If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.
If A is any square matrix, then which of the following is skew-symmetric?
If A = [aij] is a skew-symmetric matrix of order n, then ______.
If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.
Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?