English

If a Matrix A Is Both Symmetric and Skew-symmetric, Then (A) A Is a Diagonal Matrix (B) A Is a Zero Matrix (C) A Is a Scalar Matrix (D) A Is a Square Matrix - Mathematics

Advertisements
Advertisements

Question

If a matrix A is both symmetric and skew-symmetric, then

Options

  • A is a diagonal matrix

  •  A is a zero matrix

  •  A is a scalar matrix 

  • A is a square matrix

MCQ

Solution

A is a zero matrix 

\[A = \left[ a_{ij} \right]\] be a matrix which is both symmetric and skew-symmetric.

If \[A = \left[ a_{ij} \right]\]  is a symmetric matrix, then

\[a_{ij} = a_{ji}\]  for all i, j          ............(1)

If \[A = \left[ a_{ij} \right]\] is a  skew-symmetric matrix, then

\[a_{ij} = - a_{ji}\] 

\[\Rightarrow a_{ji} = - a_{ij}\] for all i,j            ............(2)

From eqs. (1) and (2), we have

\[a_{ij} = - a_{ij} \]

\[ \Rightarrow a_{ij} + a_{ij} = 0 \]

\[ \Rightarrow 2 a_{ij} = 0 \]

\[ \Rightarrow a_{ij} = 0 \]

\[ \therefore A = \left[ a_{ij} \right] \text{is a zero matrix or null matrix} . \]

\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Algebra of Matrices - Exercise 5.7 [Page 67]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 5 Algebra of Matrices
Exercise 5.7 | Q 17 | Page 67

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

if `A = [(-1,2,3),(5,7,9),(-2,1,1)] and B = [(-4,1,-5),(1,2,0),(1,3,1)]` then verify that (A- B)' = A' - B'


if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A - B)' = A' - B'


If A = `[(sin alpha, cos alpha), (-cos alpha, sin alpha)]` then verify that  A'A = I


Show that the matrix  A = `[(0,1,-1),(-1,0,1),(1,-1,0)]` is a skew symmetric matrix.


Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

`[(3,5),(1,-1)]`


If A and B are symmetric matrices, prove that AB − BA is a skew symmetric matrix.


Show that the matrix B'AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.


Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.


If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.


For what value of x, is the matrix  \[A = \begin{bmatrix}0 & 1 & - 2 \\ - 1 & 0 & 3 \\ x & - 3 & 0\end{bmatrix}\]  a skew-symmetric matrix?


If A and B are two matrices of order 3 × m and 3 × n respectively and m = n, then the order of 5A − 2B is 


If A and B are matrices of the same order, then ABT − BAT is a 


Show that a matrix which is both symmetric and skew symmetric is a zero matrix.


If A and B are two skew-symmetric matrices of same order, then AB is symmetric matrix if ______.


If A, B are square matrices of same order and B is a skew-symmetric matrix, show that A′BA is skew-symmetric.


Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.


The matrix `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]` is a ______.


If A and B are matrices of same order, then (AB′ – BA′) is a ______.


If A and B are symmetric matrices, then AB – BA is a ______.


If A and B are symmetric matrices, then BA – 2AB is a ______.


If each of the three matrices of the same order are symmetric, then their sum is a symmetric matrix.


If A and B are any two matrices of the same order, then (AB)′ = A′B′.


If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.


If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.


If A is any square matrix, then which of the following is skew-symmetric?


If A = [aij] is a skew-symmetric matrix of order n, then ______.


If `[(2, 0),(5, 4)]` = P + Q, where P is symmetric, and Q is a skew-symmetric matrix, then Q is equal to ______.


Number of symmetric matrices of order 3 × 3 with each entry 1 or – 1 is ______.


For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×