Advertisements
Advertisements
Question
For what value of k the matrix `[(0, k),(-6, 0)]` is a skew symmetric matrix?
Solution
Let A = `[(0, k),(-6, 0)]`
∴ AT = `[(0, -6),(k, 0)]`
Given A is a skew-symmetric matrix.
∴ AT = – A
`[(0, -6),(k, 0)] = -[(0, k),(-6, 0)]`
= `[(0, -k),(6, 0)]`
On equating the corresponding entries,
k = 6
APPEARS IN
RELATED QUESTIONS
if `A' [(3,4),(-1, 2),(0,1)] and B = [((-1,2,1),(1,2,3))]` then verify that (A + B)' = A' + B'
if A' = `[(-2,3),(1,2)] and B = [(-1,0),(1,2)]` then find (A + 2B)'
For the matrix A = `[(1,5),(6,7)]` verify that (A + A') is a symmetric matrix.
Express the following matrices as the sum of a symmetric and a skew symmetric matrix:
`[(1,5),(-1,2)]`
Find the values of x, y, z if the matrix `A = [(0,2y,z),(x,y,-z),(x , -y,z)]` satisfy the equation A'A = I.
If the matrix A is both symmetric and skew symmetric, then ______.
If A and B are symmetric matrices of the same order, write whether AB − BA is symmetric or skew-symmetric or neither of the two.
Write a square matrix which is both symmetric as well as skew-symmetric.
If \[A = \begin{bmatrix}1 & 2 \\ 0 & 3\end{bmatrix}\] is written as B + C, where B is a symmetric matrix and C is a skew-symmetric matrix, then B is equal to.
The matrix \[\begin{bmatrix}0 & 5 & - 7 \\ - 5 & 0 & 11 \\ 7 & - 11 & 0\end{bmatrix}\] is
If A is a square matrix, then AA is a
If A = [aij] is a square matrix of even order such that aij = i2 − j2, then
The matrix \[A = \begin{bmatrix}0 & - 5 & 8 \\ 5 & 0 & 12 \\ - 8 & - 12 & 0\end{bmatrix}\] is a
Let A = `[(2, 3),(-1, 2)]`. Then show that A2 – 4A + 7I = O. Using this result calculate A5 also.
If A = `[(0, 1),(1, 1)]` and B = `[(0, -1),(1, 0)]`, show that (A + B)(A – B) ≠ A2 – B2
If the matrix `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]`, is a skew symmetric matrix, find the values of a, b and c.
Express the matrix `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` as the sum of a symmetric and a skew-symmetric matrix.
Sum of two skew-symmetric matrices is always ______ matrix.
If A is a symmetric matrix, then A3 is a ______ matrix.
If A is symmetric matrix, then B′AB is ______.
If A is skew-symmetric matrix, then A2 is a symmetric matrix.
If P is of order 2 x 3 and Q is of order 3 x 2, then PQ is of order ____________.
If A = `[(3, "x" - 1),(2"x" + 3, "x" + 2)]` is a symmetric matrix, then x = ____________.
If A, B are Symmetric matrices of same order, then AB – BA is a
If A = [aij] is a skew-symmetric matrix of order n, then ______.