Advertisements
Advertisements
Question
Evaluate:
`int_0^1 |2x + 1|dx`
Solution
`int_0^1 |2x + 1|dx`
= `int_0^1 2x + 1 dx` ...`{{:("For" 0 < x < 1),(2x + 1 > 0),(∴ |2x + 1| = 2x + 1):}`
= `[2 x^2/2 + x]_0^1`
= `[x^2 + x]_0^1`
= (1 + 1) – (0 + 0)
= 2
APPEARS IN
RELATED QUESTIONS
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_-1^1x^2/(1+x^2) dx=` ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
`int_a^b f(x)dx` = ______.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`