Advertisements
Advertisements
Question
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Solution
Let I = `int_0^a (sqrtx)/(sqrtx + sqrt(a - x)) dx` ....(i)
`= I = int_0^a (sqrt(a - x))/(sqrt(a - x) + sqrt (a - (a - x)))`
I = `int_0^a sqrt(a - x)/(sqrt(a - x) + sqrtx) dx` ....(ii)
`[because int_0^a f(x) dx = int_0^a f(a - x) dx]`
On adding equation (i) and (ii),
2 I = `int_0^a (sqrtx + sqrt(a - x))/(sqrt(a - x) + sqrtx) dx`
2 I `= int_0^a 1 * dx => [x]_0^a`
⇒ 2I = a
∴ `I = a/2`
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^pi x sin^2x dx` = ______
`int_0^1 "e"^(5logx) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
`int_0^1 1/(2x + 5) dx` = ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`