English

By using the properties of the definite integral, evaluate the integral: ∫0a xx +a-x dx - Mathematics

Advertisements
Advertisements

Question

By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`

Sum

Solution

Let I = `int_0^a  (sqrtx)/(sqrtx + sqrt(a - x))  dx`       ....(i)

`= I = int_0^a (sqrt(a - x))/(sqrt(a - x) + sqrt (a - (a - x)))`

I = `int_0^a sqrt(a - x)/(sqrt(a - x) + sqrtx)  dx`        ....(ii)

`[because int_0^a f(x) dx = int_0^a f(a - x)  dx]`

On adding equation (i) and (ii),

2 I = `int_0^a  (sqrtx + sqrt(a - x))/(sqrt(a - x) + sqrtx)  dx`

2 I `= int_0^a 1 * dx => [x]_0^a`

⇒ 2I = a

∴ `I = a/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 17 | Page 347

RELATED QUESTIONS

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^pi x sin^2x dx` = ______ 


`int_0^1 "e"^(5logx) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


`int_0^1 1/(2x + 5) dx` = ______.


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×