English

By using the properties of the definite integral, evaluate the integral: ∫0πlog(1+cosx)dx - Mathematics

Advertisements
Advertisements

Question

By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`

Sum

Solution

Let `I = int_0^pi log (1 + cos x)  dx`                ....(i)

`I = int_0^pi log [1 + cos (pi - x)] dx`

`[∵ int_0^a f (x) dx = int_0^a f (a - x)  dx]`

`= int_0^pi log (1 - cos x) dx`                              .....(ii)

Adding (i) and (ii), we get

`2 I = int_0^pi [log (1 + cos x) + log (1 - cos x)]  dx`

`= int_0^pi log (1 - cos^2 x)  dx`

`= int_0^pi log sin^2 x  dx`

`= 2 int_0^pilog sin x  dx`

⇒ `I = int_0^pi log sin x  dx`

`= 2 int_0^(pi/2) log sin x  dx = 2I_1`

`[∵ int_0^(2a) f (x) dx = 2 int_0^a f (x) dx, "if" f (2a - x) = f (x)]`

Where `I_1 = int_0^(pi/2) log sin x dx`                ...(iii)

Then, `I_1 = int_0^(pi/2) log sin (pi/2 - x) dx`

⇒ `I_1 = int_0^(pi/2) log cos x dx`                  ....(iv)

Adding (iii) and (iv), we get

`2I_1 = int_0^(pi/2) log sin x dx + int_0^(pi/2) log cos x  dx`

`= int_0^(pi/2) (log sin x + log cos x)  dx`

`= int_0^(pi/2) log (sin x cos x) dx`

`= int_0^(pi/2) log ((2sin x cos x)/2)`

`= int_0^(pi/2) log ((sin 2x)/2) dx`

`= int_0^(pi/2) log sin 2 x dx - int_0^(pi/2) log 2 dx`

`= int_0^(pi/2) log sin 2x  dx - (log 2)[x]_0^(pi/2)`

`= int_0^(pi/2) log sin 2 x dx - (log 2) (pi/2 - 0)`

`= int_0^(pi/2) log sin 2x  dx - pi/2 log 2`

`= I_2 - pi/2 log 2`             .....(v)

Where `I_2 = int_0^(pi/2) log sin 2x dx`

Put 2x = t

⇒ 2dx = dt

When x = 0, t = 0

When `x = pi/2, t = pi`

∴ `I_2 = 1/2 int_0^pi log sin t dt`

`= 1/2 *2 int_0^(pi/2) log sin t dt`       `...[∵ log sin (pi -t) = log sint]`

`= int_0^(pi/2) log sin x = I_1`

∴ From (v), we get

`2I_1 = I_2 - pi/2 log 2`

⇒ `2I_1 = I_1 - pi/2 log 2`

⇒ `I_1 = pi/2 log 2`

∴ `I = 2 xx (-pi/2 log 2)`

= - π log 2

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 16 | Page 347

RELATED QUESTIONS

By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_2^3 x/(x^2 - 1)` dx = ______


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^1 log(1/x - 1) "dx"` = ______.


Which of the following is true?


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


`int (dx)/(e^x + e^(-x))` is equal to ______.


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Evaluate: `int_(-1)^3 |x^3 - x|dx`


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×