Advertisements
Advertisements
Question
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
Solution
Let `I = int_0^pi log (1 + cos x) dx` ....(i)
`I = int_0^pi log [1 + cos (pi - x)] dx`
`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
`= int_0^pi log (1 - cos x) dx` .....(ii)
Adding (i) and (ii), we get
`2 I = int_0^pi [log (1 + cos x) + log (1 - cos x)] dx`
`= int_0^pi log (1 - cos^2 x) dx`
`= int_0^pi log sin^2 x dx`
`= 2 int_0^pilog sin x dx`
⇒ `I = int_0^pi log sin x dx`
`= 2 int_0^(pi/2) log sin x dx = 2I_1`
`[∵ int_0^(2a) f (x) dx = 2 int_0^a f (x) dx, "if" f (2a - x) = f (x)]`
Where `I_1 = int_0^(pi/2) log sin x dx` ...(iii)
Then, `I_1 = int_0^(pi/2) log sin (pi/2 - x) dx`
⇒ `I_1 = int_0^(pi/2) log cos x dx` ....(iv)
Adding (iii) and (iv), we get
`2I_1 = int_0^(pi/2) log sin x dx + int_0^(pi/2) log cos x dx`
`= int_0^(pi/2) (log sin x + log cos x) dx`
`= int_0^(pi/2) log (sin x cos x) dx`
`= int_0^(pi/2) log ((2sin x cos x)/2)`
`= int_0^(pi/2) log ((sin 2x)/2) dx`
`= int_0^(pi/2) log sin 2 x dx - int_0^(pi/2) log 2 dx`
`= int_0^(pi/2) log sin 2x dx - (log 2)[x]_0^(pi/2)`
`= int_0^(pi/2) log sin 2 x dx - (log 2) (pi/2 - 0)`
`= int_0^(pi/2) log sin 2x dx - pi/2 log 2`
`= I_2 - pi/2 log 2` .....(v)
Where `I_2 = int_0^(pi/2) log sin 2x dx`
Put 2x = t
⇒ 2dx = dt
When x = 0, t = 0
When `x = pi/2, t = pi`
∴ `I_2 = 1/2 int_0^pi log sin t dt`
`= 1/2 *2 int_0^(pi/2) log sin t dt` `...[∵ log sin (pi -t) = log sint]`
`= int_0^(pi/2) log sin x = I_1`
∴ From (v), we get
`2I_1 = I_2 - pi/2 log 2`
⇒ `2I_1 = I_1 - pi/2 log 2`
⇒ `I_1 = pi/2 log 2`
∴ `I = 2 xx (-pi/2 log 2)`
= - π log 2
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
Which of the following is true?
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Evaluate: `int_(-1)^3 |x^3 - x|dx`
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`