English

D∫-11x3+|x|+1x2+2|x|+1dx is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.

Options

  • log 2

  • 2 log 2

  • `1/2 log 2`

  • 4 log 2

MCQ
Fill in the Blanks

Solution

`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to 2 log 2.

Explanation:

Since I = `int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x`

= `int_(-1)^1 x^3/(x^2 + 2|x| + 1) + int_(-1)^1 (|x| + 1)/(x^2 + 2|x| + 1)"d"x`

= `0 + 2 int_0^1 (|x| + 1)/((|x| + 1)^2) "d"x`  ....[odd function + even function]

= `2 int_0^1 (x + 1)/(x + 1)^2  "d"x`

= `2 int_0^1 1/(x + 1)  "d"x`

= `2|log|x + 1|]_0^1`

= 2 log 2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Solved Examples [Page 161]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Solved Examples | Q 26 | Page 161

RELATED QUESTIONS

Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


`int_0^1 "e"^(2x) "d"x` = ______


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^{pi/2} log(tanx)dx` = ______


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


`int_1^2 x logx  dx`= ______


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×