Advertisements
Advertisements
Question
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
Options
log 2
2 log 2
`1/2 log 2`
4 log 2
Solution
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to 2 log 2.
Explanation:
Since I = `int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x`
= `int_(-1)^1 x^3/(x^2 + 2|x| + 1) + int_(-1)^1 (|x| + 1)/(x^2 + 2|x| + 1)"d"x`
= `0 + 2 int_0^1 (|x| + 1)/((|x| + 1)^2) "d"x` ....[odd function + even function]
= `2 int_0^1 (x + 1)/(x + 1)^2 "d"x`
= `2 int_0^1 1/(x + 1) "d"x`
= `2|log|x + 1|]_0^1`
= 2 log 2.
APPEARS IN
RELATED QUESTIONS
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
`int_0^1 "e"^(2x) "d"x` = ______
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^{pi/2} log(tanx)dx` = ______
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
`int_1^2 x logx dx`= ______
Evaluate:
`int_0^sqrt(2)[x^2]dx`