English

Evaluate: π∫02π11+esinxdx - Mathematics

Advertisements
Advertisements

Question

Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx

Sum

Solution

Let I = `int_0^(2π) (1)/(1 + e^(sin x)`dx   ...(i)

Applying property,

`int_0^af(x)dx = int_0^af(a-x)dx,` we get

I = `int_0^(2pi) dx/(1+e^(sin(2pi-x)))`

= `int_0^(2pi)dx/(1+e^(-sinx))`

= `int_0^(2pi)dx/(1+1/e^(sinx))`

= `int_0^(2pi)(e^(sinx)dx)/(e^(sinx)+1)`   ...(ii)

On adding equations (i) and (ii), we get

2I = `int_0^(2pi)dx/(1+e^(sinx))+int_0^(2pi)(e^(sinx)dx)/(1+e^(sinx))`

= `int_0^(2pi)((1+e^(sinx))/(1+e^(sinx)))dx`

= `int_0^(2pi)1.dx`

⇒ 2I = `[x]_0^(2pi)`

⇒ 2I = [2π]

⇒ I = π

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 - Outside Delhi Set 1

RELATED QUESTIONS

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate :  ∫ log (1 + x2) dx


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


Evaluate `int_0^1 x(1 - x)^5  "d"x`


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^{pi/2} log(tanx)dx` = ______


`int_2^3 x/(x^2 - 1)` dx = ______


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_0^1 (1 - x)^5`dx = ______.


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_0^pi x sin^2x dx` = ______ 


Which of the following is true?


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int (dx)/(e^x + e^(-x))` is equal to ______.


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_0^1 1/(2x + 5) dx` = ______.


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Evaluate `int_-1^1 |x^4 - x|dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


`int_1^2 x logx  dx`= ______


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×