हिंदी

Evaluate: π∫02π11+esinxdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx

योग

उत्तर

Let I = `int_0^(2π) (1)/(1 + e^(sin x)`dx   ...(i)

Applying property,

`int_0^af(x)dx = int_0^af(a-x)dx,` we get

I = `int_0^(2pi) dx/(1+e^(sin(2pi-x)))`

= `int_0^(2pi)dx/(1+e^(-sinx))`

= `int_0^(2pi)dx/(1+1/e^(sinx))`

= `int_0^(2pi)(e^(sinx)dx)/(e^(sinx)+1)`   ...(ii)

On adding equations (i) and (ii), we get

2I = `int_0^(2pi)dx/(1+e^(sinx))+int_0^(2pi)(e^(sinx)dx)/(1+e^(sinx))`

= `int_0^(2pi)((1+e^(sinx))/(1+e^(sinx)))dx`

= `int_0^(2pi)1.dx`

⇒ 2I = `[x]_0^(2pi)`

⇒ 2I = [2π]

⇒ I = π

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (April) Term 2 - Outside Delhi Set 1

संबंधित प्रश्न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate :  ∫ log (1 + x2) dx


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_2^3 x/(x^2 - 1)` dx = ______


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_0^1 x tan^-1x  dx` = ______ 


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^pi x sin^2x dx` = ______ 


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


Evaluate: `int_(-1)^3 |x^3 - x|dx`


`int_0^1 1/(2x + 5) dx` = ______.


`int_a^b f(x)dx` = ______.


`int_4^9 1/sqrt(x)dx` = ______.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate `int_-1^1 |x^4 - x|dx`.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×