Advertisements
Advertisements
प्रश्न
Evaluate: `int_(-1)^3 |x^3 - x|dx`
उत्तर
Let I = `int_(-1)^2|x^3 - x|dx`
= `int_(-1)^2|x(x^2 - 1)|dx`
= `int_(-1)^2|x(x - 1)(x + 1)|dx`
Here, x3 – x = 0, when x = 0, 1, –1
Value of x | Value of (x3 – x) |
–1 < x < 0 | +ve |
0 < x < 1 | –ve |
1 < x < 2 | +ve |
∴ |x3 – x| = `{{:(x^3 - x, if -1 < x < 0 and 1 < x < 2),(-x^3 + x, if 0 < x < 1):}`
I = `int_(-1)^0(x^3 - x)dx + int_1^1(-x^3 + x)dx + int_1^2(x^3 - x)dx`
= `[x^4/4 - x^2/2]_-1^0 + [(-x^4)/4 + x^2/2]_0^1 + [x^4/4 - x^2/2]_1^2`
= `1/4 + 1/4 + 2 + 1/4`
= `2 + 3/4`
= `11/4`
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
`int_0^2 e^x dx` = ______.
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_0^pi x sin^2x dx` = ______
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
`int_a^b f(x)dx` = ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following definite intergral:
`int_1^3logx dx`