Advertisements
Advertisements
प्रश्न
Evaluate: `int_-1^1 x^17.cos^4x dx`
विकल्प
`oo`
1
– 1
0
उत्तर
0
Explanation:
Let f(x) = x17 cos4x
∴ f(– x) = (– x)17 cos4(– x)
= – x17 cos4x
= – f(x)
`\implies` f(x) is an odd function.
So by the property of definite integration.
`int_-a^a f(x)dx` = 0
If f(x) is an odd function.
`\implies int_-1^1 x^17 cos^4x dx` = 0
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_2^3 x/(x^2 - 1)` dx = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_(-1)^3 |x^3 - x|dx`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`
Evaluate the following definite intergral:
`int_1^3logx dx`