Advertisements
Advertisements
प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
उत्तर
Let `I=int_0^pi(xsinx)/(1+sinx)dx`
`=int_0^pi((pi-x)sin(pi-x))/(1+sin(pi-x))dx [because int_0^a f(x)dx=int_0^af(a-x)dx]`
`=int_0^pi((pi-x)sinx)/(1+sinx)dx`
`=int_0^pi(pisinx)/(1+sinx)dx-I`
`I=int_0^pi(pisinx)/(1+sinx)dx-I`
`2I=int_0^pi(pisinx.(1-sinx))/((1+sinx)(1-sinx))dx`
`2I=int_0^pi(pisinx.(1-sinx))/(1-sin^2x)dx`
`(2I)/pi=int_0^pi(sinx.(1-sinx))/cos^2xdx`
`(2I)/pi=int_0^pi(sinx.-sin^2x)/cos^2xdx`
`(2I)/pi=int_0^pi(sinx)/cos^2xdx-int_0^pi(sin^2x)/cos^2xdx`
`(2I)/pi=int_0^pisecx.tanxdx-int_0^pitan^2xdx`
`(2I)/pi=[secx]_0^pi-int_0^pi(sec^2x-1)dx`
`(2I)/pi=[secpi-sec0]-int_0^pisec^2x.dx+int_0^pi1dx`
`(2I)/pi=[-1-1]-[tanx]_0^pi_[x]_0^pi`
`(2I)/pi=[-2]-[tanpi-tan0]+pi`
`(2I)/pi=[-2]-0+pi`
`thereforeI=((pi-2)pi)/2`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
Which of the following is true?
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_0^1 1/(2x + 5) dx` = ______.
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`