हिंदी

Evaluate :∫π0 (xsinx)/(1+sinx)dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`

उत्तर

Let `I=int_0^pi(xsinx)/(1+sinx)dx`

`=int_0^pi((pi-x)sin(pi-x))/(1+sin(pi-x))dx [because int_0^a f(x)dx=int_0^af(a-x)dx]`

 

`=int_0^pi((pi-x)sinx)/(1+sinx)dx`

 

`=int_0^pi(pisinx)/(1+sinx)dx-I`

 

`I=int_0^pi(pisinx)/(1+sinx)dx-I`

 

`2I=int_0^pi(pisinx.(1-sinx))/((1+sinx)(1-sinx))dx`

 

`2I=int_0^pi(pisinx.(1-sinx))/(1-sin^2x)dx`

 

`(2I)/pi=int_0^pi(sinx.(1-sinx))/cos^2xdx`

 

`(2I)/pi=int_0^pi(sinx.-sin^2x)/cos^2xdx`

`(2I)/pi=int_0^pi(sinx)/cos^2xdx-int_0^pi(sin^2x)/cos^2xdx`

 

`(2I)/pi=int_0^pisecx.tanxdx-int_0^pitan^2xdx`

 

`(2I)/pi=[secx]_0^pi-int_0^pi(sec^2x-1)dx`

 

`(2I)/pi=[secpi-sec0]-int_0^pisec^2x.dx+int_0^pi1dx`

`(2I)/pi=[-1-1]-[tanx]_0^pi_[x]_0^pi`

`(2I)/pi=[-2]-[tanpi-tan0]+pi`

`(2I)/pi=[-2]-0+pi`

`thereforeI=((pi-2)pi)/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March)

APPEARS IN

संबंधित प्रश्न

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


Which of the following is true?


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_0^1 1/(2x + 5) dx` = ______.


If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×