Advertisements
Advertisements
प्रश्न
Evaluate `int_-1^1 |x^4 - x|dx`.
उत्तर
Let I = `int_-1^1 |x^4 - x|dx`
= `int_-1^0 (x^4 - x)dx - int_0^1 (x^4 - x)dx`
= `[x^5/5 - x^2/2]_-1^0 - [x^5/5 - x^2/2]_0^1`
= `[(0 - 0) - ((-1)/5 - 1/2)] - [(1/5 - 1/2) - 0]`
= `7/10 + 3/10`
= 1.
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
`int_1^2 1/(2x + 3) dx` = ______
Evaluate `int_1^3 x^2*log x "d"x`
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^4 1/(1 + sqrtx)`dx = ______.
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
Which of the following is true?
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_(-1)^3 |x^3 - x|dx`
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`