Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
उत्तर
Let `"I" = int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"` ...(i)
⇒ `"I" = int_0^pi ((pi-"x")sin(pi-"x"))/(1+3cos^2(pi-"x"))d"x"`
= `int_0^pi (pisin"x")/(1+3cos^2"x")d"x" - int_0^pi (xsin"x")/(1+3cos^2"x")d"x"` ...(ii)
Adding (i) & (ii), we have
we get: `2"I" = int_0^pi(pisin"x")/(1+3 cos^2 "x")` dx
Put cos x = t
⇒ - sin x dx = dt, when x = 0
⇒ t = 1, for x = π ⇒ t = - 1
So, `2I = π int_1^-1 dt/(1 + 3t^2)`
⇒ `π/3 int_-1^1 (dt)/((1/sqrt3)^2 + (t)^2)`
⇒ `π/3 xx sqrt3 [tan^-1(sqrt3t)]_-1^1`
⇒ `(sqrt3π)/3 [ tan^-1sqrt3 - ( - tan^-1 sqrt3)]`
I = `(sqrt3π)/3. π/3 = sqrt3π^2/9`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_0^1 "e"^(2x) "d"x` = ______
`int_2^4 x/(x^2 + 1) "d"x` = ______
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int (dx)/(e^x + e^(-x))` is equal to ______.
Evaluate: `int_(-1)^3 |x^3 - x|dx`
`int_4^9 1/sqrt(x)dx` = ______.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate:
`int_0^6 |x + 3|dx`