हिंदी

Evaluate: ∫ π 0 X Sin X 1 + 3 Cos 2 X D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.

योग

उत्तर

Let `"I" = int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`  ...(i) 

 

⇒ `"I" = int_0^pi ((pi-"x")sin(pi-"x"))/(1+3cos^2(pi-"x"))d"x"`


= `int_0^pi (pisin"x")/(1+3cos^2"x")d"x" - int_0^pi (xsin"x")/(1+3cos^2"x")d"x"`        ...(ii)

Adding (i) & (ii), we have

we get: `2"I" = int_0^pi(pisin"x")/(1+3 cos^2 "x")` dx

Put cos x = t
⇒ - sin x dx = dt, when x = 0 

⇒ t = 1, for x = π ⇒ t = - 1

So, `2I = π int_1^-1 dt/(1 + 3t^2)`

 

⇒ `π/3 int_-1^1 (dt)/((1/sqrt3)^2 + (t)^2)`

 

⇒ `π/3 xx sqrt3 [tan^-1(sqrt3t)]_-1^1`

⇒ `(sqrt3π)/3 [ tan^-1sqrt3 - ( - tan^-1 sqrt3)]`

I = `(sqrt3π)/3. π/3 = sqrt3π^2/9`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) All India Set 1 E

संबंधित प्रश्न

 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_0^1 "e"^(2x) "d"x` = ______


`int_2^4 x/(x^2 + 1)  "d"x` = ______


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int (dx)/(e^x + e^(-x))` is equal to ______.


Evaluate: `int_(-1)^3 |x^3 - x|dx`


`int_4^9 1/sqrt(x)dx` = ______.


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate:

`int_0^6 |x + 3|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×