हिंदी

∫01e2xdx = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int_0^1 "e"^(2x) "d"x` = ______

रिक्त स्थान भरें

उत्तर

`int_0^1 "e"^(2x) "d"x` =`bbunderline(1/2 ("e"^2 - 1))`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.6: Definite Integration - Q.2

संबंधित प्रश्न

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


Evaluate : `intsec^nxtanxdx`


 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


`int_0^2 e^x dx` = ______.


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/2} xsinx dx` = ______


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_0^pi sin^2x.cos^2x  dx` = ______ 


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


Which of the following is true?


`int_0^1 "e"^(5logx) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×