Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
उत्तर
Let `I = int_0^(pi/2) (cos^5 x)/ (sin^5 x + cos ^5 x) dx` ....(i)
Also, `I = int_0^(pi/2) (cos^5 (pi/2 - x))/(sin^5 (pi/2 - x) + cos^5 (pi/2 - x)) dx`
`[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
`= int_0^(pi/2) (sin^5 x)/ (cos^5x + sin^5 x) dx` ....(ii)
Adding (i) and (ii), we have
`2 I = int_0^(pi/2) (cos^5x)/(cos^5x + sin^5 x) dx + int_0^(pi/2) (sin^5x)/ (cos^5 x + sin^5 x) dx`
`= int_0^(pi/2) (cos^5 x + sin^5 x)/ (cos^5 x + sin^5 x) dx`
`= int_0^(pi/2) 1 dx = [x]_0^(pi/2) = pi/2`
Hence, `I = pi/4`
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Evaluate `int_0^1 x(1 - x)^5 "d"x`
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^{pi/2} xsinx dx` = ______
`int_0^1 (1 - x)^5`dx = ______.
`int_0^{pi/2} cos^2x dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^9 1/(1 + sqrtx)` dx = ______
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Evaluate: `int_(-1)^3 |x^3 - x|dx`
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
`int_1^2 x logx dx`= ______
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`