Advertisements
Advertisements
प्रश्न
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
उत्तर
Let I = `int_0^π (xtanx)/(secx + tanx)dx` ...(1)
I = `int_0^π {((π - x)tan(π - x))/(sec(π - x) + tan(π - x))}dx` ...`(int_0^a f(x)dx = int_0^a f(a - x)dx)`
`\implies` I = `int_0^π {(-(π - x)tanx)/(-(secx + tanx))}dx`
`\implies` I = `int_0^π ((π - x)tanx)/(secx + tanx)dx` ...(2)
Adding (1) and (2), we obtain
2I = `int_0^π (πtanx)/(secx + tanx)dx`
`implies` 2I = `πint_0^π (sinx/cosx)/(1/cosx + sinx/cosx)dx`
`implies` 2I = `πint_0^π (sinx + 1 - 1)/(1 + sinx)dx`
`implies` 2I = `πint_0^π 1.dx - πint_0^π 1/(1 + sinx)dx`
`implies` 2I = `π[x]_0^π - πint_0^π (1 - sinx)/(cos^2x)dx`
`implies` 2I = `π^2 - πint_0^π (sec^2x - tanx secx)dx`
`implies` 2I = `π^2 - π[tanx - secx]_0^π`
`implies` 2I = π[tan π – sec π – tan 0 + sec 0]
`implies` 2I = π2 – π[0 – (–1) – 0 + 1]
`implies` 2I = π2 – 2π
`implies` 2I = π(π – 2)
`implies` I = `π/2(π - 2)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_0^1 "e"^(2x) "d"x` = ______
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_0^1 (1 - x)^5`dx = ______.
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`
Evaluate the following definite intergral:
`int_1^3logx dx`