हिंदी

Evaluate the definite integral: ∫14[|x-1|+|x-2|+|x-3|]dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`

योग

उत्तर

Let `I = int_1^4 (|x - 1| + |x - 2| + |x - 3|)  dx`

Define,

|x - 1| = x -1, when x - 1 ≥ 0, i.e., x ≥ 1

|x - 2| = x -2, when x - 2 ≥ 0, i.e., x ≥ 2

|x - 2| = - (x - 2), when x - 2 ≤ 0, i.e., x ≤ 2

|x - 3| = - (x - 3), when x - 3 ≤ 0, i.e., x ≤ 3

|x - 3| = (x - 3), when x - 3 ≥ 0, i.e, x ≥ 3

⇒ `I = int_1^4 (x - 1)  dx - int_1^2 (x - 2)  dx + int_2^4 (x - 2)  dx  - int_1^3 (x - 3) dx + int_3^4 (x - 3)  dx`

`= [x^2/2 - x]_1^4 - [x^2/2 - 2x]_1^2 + [x^2/2 - 2x]_2^4 - [x^2/2 - 3x]_1^3 + [x^2/2 - 3x]_3^4`

`= [(16/2 - 1/2) - (4 - 1)] - [(4/2 - 1/2) - (4 - 2)] + [(16/2 - 1/2) - (8 - 4) - [(9/2 - 1/2) - (9 - 3)] + [(16/2 - 9/2) - (12 - 9)]`

`= [15/2 - 3/2 + 12/2 - 8/2 + 7/2] + [-3 + 2 - 4 + 6 - 3]`

`= [23/2] + [-2]`

`= 19/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.12 [पृष्ठ ३५३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.12 | Q 33 | पृष्ठ ३५३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_(pi/6)^(pi/3)  (sin x + cosx)/sqrt(sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×