Advertisements
Advertisements
प्रश्न
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
उत्तर
Let `I = int_1^4 (|x - 1| + |x - 2| + |x - 3|) dx`
Define,
|x - 1| = x -1, when x - 1 ≥ 0, i.e., x ≥ 1
|x - 2| = x -2, when x - 2 ≥ 0, i.e., x ≥ 2
|x - 2| = - (x - 2), when x - 2 ≤ 0, i.e., x ≤ 2
|x - 3| = - (x - 3), when x - 3 ≤ 0, i.e., x ≤ 3
|x - 3| = (x - 3), when x - 3 ≥ 0, i.e, x ≥ 3
⇒ `I = int_1^4 (x - 1) dx - int_1^2 (x - 2) dx + int_2^4 (x - 2) dx - int_1^3 (x - 3) dx + int_3^4 (x - 3) dx`
`= [x^2/2 - x]_1^4 - [x^2/2 - 2x]_1^2 + [x^2/2 - 2x]_2^4 - [x^2/2 - 3x]_1^3 + [x^2/2 - 3x]_3^4`
`= [(16/2 - 1/2) - (4 - 1)] - [(4/2 - 1/2) - (4 - 2)] + [(16/2 - 1/2) - (8 - 4) - [(9/2 - 1/2) - (9 - 3)] + [(16/2 - 9/2) - (12 - 9)]`
`= [15/2 - 3/2 + 12/2 - 8/2 + 7/2] + [-3 + 2 - 4 + 6 - 3]`
`= [23/2] + [-2]`
`= 19/2`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
Evaluate the following integral:
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.