हिंदी

The value of d∫-ππsin3xcos2x dx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.

रिक्त स्थान भरें

उत्तर

The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is 0.

Explanation:

Let I = `int_(-pi)^pi sin^3x cos^2x  "d"x`

Let f(x) = sin3x cos2x

f(–x) = sin3(– x) cos2(– x)

= – sin3x cos2x

= – f(x)

∴ `int_(-pi)^pi sin^3 x cos^2 x  "d"x` is an odd function

∴ I = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 63 | पृष्ठ १६९

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\cot x \cdot \log \text{sin x dx}\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

Using L’Hospital Rule, evaluate: `lim_(x->0)  (8^x - 4^x)/(4x
)`


Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


What is the derivative of `f(x) = |x|` at `x` = 0?


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×