हिंदी

Evaluate the following: md∫0π2tanx1+m2tan2xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`

योग

उत्तर

Let I = `int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`

= `int_0^(pi/2) (sinx/cosx)/(1 + "m"^2 (sin^2x)/(cos^2x)) "d"x`

= `int_0^(pi/2) (sinx/cosx)/((cos^2x + "m"^2 sin^2x)/cos^2x) "d"x`

= `int_0^(pi/2) (sin x cos x)/(cos^2x + "m"^2 sin^2x) "d"x`

= `int_0^(pi/2) (sinx cosx)/(1 - sin^2x + "m"^2 sin^2x) "d"x`

= `int_0^(pi/2) (sinx cosx)/(1 - sin^2x (1 - "m"^2)) "d"x`

Put sin2x = t

2 sin x cos x dx = dt

sin x cos x dx = `"dt"//2`

Changing the limits we get,

When x = 0

∴ t = sin20 = 0

When x = `pi/2`

∴ t = `sin^2  pi/2` = 1

∴ I = `1/2 int_0^1  "dt"/(1 - (1 - "m"^2)"t")`

I = `1/2 int_0^1 "dt"/(1 + ("m"^2 - 1)"t")`

= `1/2 [(log [1 + "m"^2 - 1)"t")/("m"^2 - 1)]_0^1`

= `1/(2("m"^2 - 1)) [log(1 + "m"^2 - 1) - log(1)]`

= `(log|"m"^2|)/(2("m"^2 - 1))`

Hence, I = `(log|"m"^2|)/(2("m"^2 - 1)) = (log|"m"|)/("m"^2 - 1)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 30 | पृष्ठ १६५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\log x^2}{x} dx\]

\[\int\cot x \cdot \log \text{sin x dx}\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×