हिंदी

Evaluate the following: d∫0πxsinxcos2xdx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`

योग

उत्तर

Let I = `int_0^pi x sin x cos^2x "d"x`  ....(i)

I = `int_0^pi (pi - x) sin(pi - x) cos^2 (pi - x) "d"x`

I = `int_0^pi (pi - x) sin x cos^2x "d"x`  .....(ii)

Adding (i) and (ii) we get,

2I = `int_0^pi [x sin x cos^2x + (pi - x)sinx cos^2x]"d"x`

2I = `int_0^pi sinx cos^2x * (x + pi - x) "d"x`

2I = `int__0^pi pi sin x cos^2x "d"x`

= `pi int_0^pi sin x cos^2x "d"x`

Put cos x = t

⇒ – sin x dx = dt

⇒ sin x dx = – dt

Changing the limits, we have

When x = 0 

t = cos 0 = 1

When x = `pi` 

= cos `pi` = – 1

2I = `pi int_1^(-1) - "t"^2 "dt"`

= `- pi int_1^(-1) "t"^2 "dt"`

2I = `pi int_(-1)^1 "t"^2 "dt"`  ....`[int_"a"^"b" "f"(x)"d"x = - int_"b"^"a" "f"(x) "d"x]`

2I = `pi["t"^3/3]_(-1)^1`

= `pi[1/3 + 1/3]`

= `pi(2/3)`

∴ I = `pi/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 33 | पृष्ठ १६५

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int\frac{4x + 3}{\sqrt{2 x^2 + 3x + 1}} dx\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

\[\int\limits_0^\pi \frac{\sin x}{\sin x + \cos x} dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×