Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
उत्तर
Let I = `int_0^pi x sin x cos^2x "d"x` ....(i)
I = `int_0^pi (pi - x) sin(pi - x) cos^2 (pi - x) "d"x`
I = `int_0^pi (pi - x) sin x cos^2x "d"x` .....(ii)
Adding (i) and (ii) we get,
2I = `int_0^pi [x sin x cos^2x + (pi - x)sinx cos^2x]"d"x`
2I = `int_0^pi sinx cos^2x * (x + pi - x) "d"x`
2I = `int__0^pi pi sin x cos^2x "d"x`
= `pi int_0^pi sin x cos^2x "d"x`
Put cos x = t
⇒ – sin x dx = dt
⇒ sin x dx = – dt
Changing the limits, we have
When x = 0
t = cos 0 = 1
When x = `pi`
= cos `pi` = – 1
2I = `pi int_1^(-1) - "t"^2 "dt"`
= `- pi int_1^(-1) "t"^2 "dt"`
2I = `pi int_(-1)^1 "t"^2 "dt"` ....`[int_"a"^"b" "f"(x)"d"x = - int_"b"^"a" "f"(x) "d"x]`
2I = `pi["t"^3/3]_(-1)^1`
= `pi[1/3 + 1/3]`
= `pi(2/3)`
∴ I = `pi/3`
APPEARS IN
संबंधित प्रश्न
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
Evaluate the following integrals as limit of sums:
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`