हिंदी

If f (a + b - x) = f (x), then ∫abxf(x)dx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.

विकल्प

  • `(a + b)/2 int_a^b f(b - x)  dx`

  • `(a + b)/2 int_a^b f(b + x)  dx`

  • `(b - a)/2 int_a^b f(x)  dx`

  • `(a + b)/2 int_a^b f(x)  dx`

MCQ
रिक्त स्थान भरें

उत्तर

If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to `underline((a + b)/2 int_a^b f(x)  dx)`.

Explanation:

Let `I = int_a^b x  f(x)  dx`

`= int_a^b (a + b - x) f(a + b - x) dx`        ` ...[because int_a^b f(x) dx = int_a^b f(a + b - x)]  dx`

`I = int_a^b f(a + b - x) f(x)  dx`             ` ... [because f(a + b - x) = f(x) "Given"]`

∴ `I = int_a^b [(a + b) f(x) - x f(x)]dx`

`= (a + b) int_a^b f(x)  dx - int_a^b  x  f(x)  dx`

= `(a + b) int_a^b f(x)  dx - 1`

∴ `2I = (a + b) int_a^b  f(x) dx`

∴ `I = (a + b)/2 int_a^b f(x) dx`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.12 [पृष्ठ ३५४]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.12 | Q 43 | पृष्ठ ३५४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_(pi/6)^(pi/3)  (sin x + cosx)/sqrt(sin 2x) dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int dx/(e^x + e^(-x))` is equal to ______.


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


Evaluate the following as limit of sum:

`int _0^2 (x^2 + 3) "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to


`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×