Advertisements
Advertisements
प्रश्न
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
विकल्प
`(a + b)/2 int_a^b f(b - x) dx`
`(a + b)/2 int_a^b f(b + x) dx`
`(b - a)/2 int_a^b f(x) dx`
`(a + b)/2 int_a^b f(x) dx`
उत्तर
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to `underline((a + b)/2 int_a^b f(x) dx)`.
Explanation:
Let `I = int_a^b x f(x) dx`
`= int_a^b (a + b - x) f(a + b - x) dx` ` ...[because int_a^b f(x) dx = int_a^b f(a + b - x)] dx`
`I = int_a^b f(a + b - x) f(x) dx` ` ... [because f(a + b - x) = f(x) "Given"]`
∴ `I = int_a^b [(a + b) f(x) - x f(x)]dx`
`= (a + b) int_a^b f(x) dx - int_a^b x f(x) dx`
= `(a + b) int_a^b f(x) dx - 1`
∴ `2I = (a + b) int_a^b f(x) dx`
∴ `I = (a + b)/2 int_a^b f(x) dx`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
`int dx/(e^x + e^(-x))` is equal to ______.
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
Evaluate the following integral:
Evaluate the following integrals as limit of sums:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.