हिंदी

Prove the following: ∫13dxx2(x+1)=23+log 23 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`

योग

उत्तर

Let `I = int_1^3 dx/(x^2 (x + 1))`

Now, `1/(x^2 (x + 1)) = A/x + B/x^2 + C/(x + 1)`

∴ 1 ≡ Ax (x + 1) + B(x + 1) + Cx2                ....(i)

Putting x = 0 in (i), we get

1 = B (0 + 1)

⇒ B = 1

Putting x = -1 in (i), we get

= C (-1)2

⇒ C = 1

Comparing coefficients of x2 on the sides of (i), we get

∴ 0 = A + C

∴ A = - C = - 1

⇒ A = -1

∴ `1/(x^2 (x + 1)) = (- 1)/x + 1/x^2 + 1/(x + 1)`

∴ `int_1^3 1/(x^2 (x + 1))`dx

`= - int_1^3 1/x "dx" + int_1^3 1/x^2 "dx" + int_1^3 1/(x + 1)`dx

`= [- log |x| + x^-1/-1 + log |x + 1|]_1^3`

`= [- 1/x + log |(x + 1)/x|]_1^3 = (-1/3 + 1) + log  4/3 - log 2`

`= 2/3 + log (4/3 xx 1/2)`

`= 2/3 + log  2/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.12 [पृष्ठ ३५३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.12 | Q 34 | पृष्ठ ३५३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate `int_1^3(e^(2-3x)+x^2+1)dx`  as a limit of sum.


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the following definite integrals as limit of sums.

`int_0^4 (x + e^(2x)) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^(pi/2) sin^3 xdx = 2/3`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


`int dx/(e^x + e^(-x))` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


` ∫  log x / x  dx `
 
 
 

\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{4x + 3}{\sqrt{2 x^2 + 3x + 1}} dx\]

\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\cot x \cdot \log \text{sin x dx}\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]

 


\[\int\limits_{- \pi/2}^{\pi/2} \sin^4 x\ dx\]

\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]


Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0 


Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`


Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to


If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is


What is the derivative of `f(x) = |x|` at `x` = 0?


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×