Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\log x \sin \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]
\[\text{Let 1} + \left( \log x \right)^2 = t\]
\[ \Rightarrow 2 \log x \times \frac{1}{x} dx = dt\]
\[ \Rightarrow \frac{\log x}{x}dx = \frac{dt}{2}\]
\[Now, \int\frac{\log x \sin \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]
\[ = \frac{1}{2}\int\sin \left( t \right) dt\]
\[ = \frac{1}{2}\left[ - \text{cos t} \right] + C\]
\[ = - \frac{1}{2}\text{cos} \left\{ 1 + \left( \log x \right)^2 \right\} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
\[\int\limits_0^1 \left( x e^x + \cos\frac{\pi x}{4} \right) dx\]
Evaluate the following integrals as limit of sums:
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
What is the derivative of `f(x) = |x|` at `x` = 0?
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.