Advertisements
Advertisements
प्रश्न
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
उत्तर
Let `I = int_(pi/6)^(pi/3) (sin x + cos x)/sqrt(sin 2x)`dx
`= int_(pi/6)^(pi/3) (sin x + cos x)/sqrt(1 - (1 - sin 2x))`dx
`= int_(pi/6)^(pi/3) (sin x + cos x)/sqrt(1 - (sin x - cos x)^2)`dx
Put sin x - cos x = t
(cos x + sin x) dx = dt
When `x = pi/6, t = sin pi/6 - cos pi/6`
`= 1/2 - sqrt3/2`
`= (sqrt3 - 1)/2`
When x = `pi/3, t = sin = pi/3 - cos pi/3`
`= sqrt3/2 - 1/2`
`(sqrt3 - 1)/2`
∴ `I = int_(1/2 - sqrt3/2)^(sqrt3/2-1/2) dt/sqrt(1-t^2) = [sin^-1 t]_(1/2-sqrt3/2)^(sqrt3/2-1/2)`
`= sin^-1(sqrt3/2 - 1/2) - sin^-1 (1/2 - sqrt3/2)`
`= sin^-1 (sqrt3/2 - 1/2) + sin^-1 (sqrt3/2 - 1/2)`
`= 2 sin^-1 1/2 (sqrt3 - 1)`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following:
`int_0^1sin^(-1) xdx = pi/2 - 1`
`int dx/(e^x + e^(-x))` is equal to ______.
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`
What is the derivative of `f(x) = |x|` at `x` = 0?
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to