Advertisements
Advertisements
प्रश्न
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
उत्तर
Let I = `int_0^1 dx/(sqrt(1 + x) - sqrtx)`
On multiplying the numerator and denominator by `sqrt(1 + x) - sqrtx`
I = int_0^1 (sqrt(1 + x) - sqrtx)/(1 + x - x) dx`
`= int_0^1 (sqrt(1 + x) - sqrtx) dx`
`= int_0^1 sqrt(1 + x) dx + int_0^1 sqrtx dx`
`= [2/3 (1 + x)^(3//2)]_0^1 + [2/3 x^(3//2)]_0^1`
`= 2/3 (2^(3//2) - 1) + 2/3 [1 - 0]`
`= 2/3 * 2^(3//2) - 2/3 + 2/3`
`= 2/3 * 2^(3//2)`
`= 2/3 * 2sqrt2`
`= (4sqrt2)/3`
APPEARS IN
संबंधित प्रश्न
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^5 (x+1) dx`
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the definite integral:
`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`
Evaluate the definite integral:
`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`
Prove the following:
`int_1^3 dx/(x^2(x +1)) = 2/3 + log 2/3`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
Evaluate the following integral:
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Solve: (x2 – yx2) dy + (y2 + xy2) dx = 0
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
What is the derivative of `f(x) = |x|` at `x` = 0?
Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.