मराठी

Evaluate the definite integral: ∫01dx1+x-x - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the definite integral:

`int_0^1 dx/(sqrt(1+x) - sqrtx)`

बेरीज

उत्तर

Let  I = `int_0^1 dx/(sqrt(1 + x) - sqrtx)`

On multiplying the numerator and denominator by `sqrt(1 + x) - sqrtx`

I = int_0^1 (sqrt(1 + x) - sqrtx)/(1 + x - x)  dx`

`= int_0^1 (sqrt(1 + x) - sqrtx)  dx`

`= int_0^1 sqrt(1 + x) dx + int_0^1 sqrtx  dx`

`= [2/3 (1 + x)^(3//2)]_0^1 + [2/3 x^(3//2)]_0^1`

`= 2/3 (2^(3//2) - 1) + 2/3 [1 - 0]`

`= 2/3 * 2^(3//2) - 2/3 + 2/3`

`= 2/3 * 2^(3//2)`

`= 2/3 * 2sqrt2`

`= (4sqrt2)/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.12 [पृष्ठ ३५३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.12 | Q 29 | पृष्ठ ३५३

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums


Evaluate the following definite integrals as limit of sums.

`int_0^5 (x+1) dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_0^(pi/4) (sin x +  cos x)/(9+16sin 2x) dx`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Prove the following:

`int_1^3 dx/(x^2(x +1)) = 2/3 + log  2/3`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


Evaluate  `int_0^1 e^(2-3x) dx` as a limit of a sum.


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


` ∫  log x / x  dx `
 
 
 

\[\int\frac{\log x^2}{x} dx\]

\[\int\cot x \cdot \log \text{sin x dx}\]

\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Evaluate:

`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`


Evaluate the following as limit of sum:

`int_0^2 "e"^x "d"x`


Evaluate the following:

`int_0^2 ("d"x)/("e"^x + "e"^-x)`


Evaluate the following:

`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is


`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to


Let f: (0,2)→R be defined as f(x) = `log_2(1 + tan((πx)/4))`. Then, `lim_(n→∞) 2/n(f(1/n) + f(2/n) + ... + f(1))` is equal to ______.


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×