मराठी

Evaluate the following: dee∫02dxex+e-x - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

02dxex+e-x

बेरीज

उत्तर

Let I = 02dxex+e-x

= 01dxex+1ex

= 01dxe2x+1ex

= 01exdxe2x+1

Put ex = t

⇒ ex dx = dt

Changing the limit, we have

When x = 0

∴ t = e0 = 1

When x = 1

∴ I = 1edtt2+1

= [tan-1t]1e

= [tan-1e-tan-1(1)]

= tan-1e-π4

Hence, I = tan-1e-π4.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 29 | पृष्ठ १६५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.