Advertisements
Advertisements
प्रश्न
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
उत्तर
`= int_0^(pi/2) sin^3 x dx`
`= 1/4 int_0^(pi/2) (3 sinx - sin 3x) dx` `....[∵ sin 3x = 3 sin x - 4 sin 3x]`
`= 1/4 [-3 cos x + (cos 3x)/3]_0^(pi/2)`
`= 1/4 [- 3 cos pi/2 + 1/3 cos (3pi)/2] - 1/4 [- 3 cos 0 + (cos0)/3]`
`= 1/4 [0 + 0 + 3 - 1/3]`
`= 1/4 (8/3)`
`= 2/3`
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate `int_1^3(e^(2-3x)+x^2+1)dx` as a limit of sum.
Evaluate the following definite integrals as limit of sums.
`int_a^b x dx`
Evaluate the following definite integrals as limit of sums.
`int_1^4 (x^2 - x) dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the following definite integrals as limit of sums.
`int_0^4 (x + e^(2x)) dx`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
Evaluate `int_0^1 e^(2-3x) dx` as a limit of a sum.
`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.
if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.
(A) `1/2`
(B) `1/3`
(C) `1/4`
(D) `1/5`
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
Using L’Hospital Rule, evaluate: `lim_(x->0) (8^x - 4^x)/(4x
)`
Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
The value of `lim_(x -> 0) [(d/(dx) int_0^(x^2) sec^2 xdx),(d/(dx) (x sin x))]` is equal to
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.