मराठी

Evaluate the following: d∫012dx(1+x2)1-x2 (Hint: Let x = sin θ) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`  (Hint: Let x = sin θ)

बेरीज

उत्तर

Let I = `int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))`

Put x = sin θ

∴ dx = cos θ dθ

Changing the limits, we get

When x = 0

∴ sin θ = θ

∴ θ = 0

When x = `1/2`

∴ sin θ = `1/2`

∴ θ = `pi/6`

∴ I = `int_0^(pi/6) (cos theta  "d"theta)/((1 + sin^2theta)sqrt(1 - sin^2theta))`

= `int_0^(pi/6) (cos theta  "d"theta)/((1 + sin^2theta) costheta)`

= `int_0^(pi/6) 1/(1 + sin^2theta)  "d"theta`

Now, dividing the numerator and denominator by cos2θ, we get

= `int_0^(pi/6) (1/cos^2theta)/(1/(cos^2theta) + (sin^2theta)/(cos^2theta)) "d"theta`

= `int_0^(pi/6) (sec^2theta)/(sec^2theta + tan^2theta) "d"theta`

= `int_0^(pi/6) (sec^2theta)/(1 + tan^2theta + tan^2theta) "d"theta`

= `int_0^(pi/6) (sec^2theta)/(2tan^2theta + 1) "d"theta`

Put tan θ = t

∴ sec2θ dθ = t

Changing the limits, we get

When θ = 0

∴ t = tan 0 = 0

When θ = `pi/6`

∴ t = `tan  pi/6 = 1/sqrt(3)`

∴ I = `int_0^(1/sqrt(3)) "dt"/(2"t"^2 + 1)`

= `1/2 int_0^(1/sqrt(3)) "dt"/("t"^2 + 1/2)`

= `1/2 int_0^(1/sqrt(3)) "dt"/("t"^2 + (1/sqrt(2))^2)`

= `1/2 xx 1/(1/sqrt(12)) [tan^-1  "t"/(1/sqrt(12))]_0^(1/sqrt(3))`

= `1/sqrt(2) tan^-1 [sqrt(2)"t"]_0^(1/sqrt(3)`

= `1/sqrt(2) [tan^-1 sqrt(2)/sqrt(3) - tan^-1 0]`

= `1/sqrt(2) tan^-1 sqrt(2/3)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 34 | पृष्ठ १६५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the following definite integrals as limit of sums.

`int_1^4 (x^2 - x) dx`


Evaluate the definite integral:

`int_(pi/2)^pi e^x ((1-sinx)/(1-cos x)) dx`


Evaluate the definite integral:

`int_0^(pi/4) (sinx cos x)/(cos^4 x + sin^4 x)`dx


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_(-1)^1 x^17 cos^4 xdx = 0`


Prove the following:

`int_0^1sin^(-1) xdx = pi/2 - 1`


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


if `int_0^k 1/(2+ 8x^2) dx = pi/16` then the value of k is ________.

(A) `1/2`

(B) `1/3`

(C) `1/4`

(D) `1/5`


\[\int\frac{1}{\sqrt{\tan^{- 1} x} . \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int e^{cos^2 x}   \text{sin 2x  dx}\]

\[\int\frac{1 + \cos x}{\left( x + \sin x \right)^3} dx\]

\[\int\sec x \cdot \text{log} \left( \sec x + \tan x \right) dx\]

\[\int \sec^4    \text{ x   tan x dx} \]

Evaluate the following integral:

\[\int\limits_{- 1}^1 \left| 2x + 1 \right| dx\]

Evaluate the following integrals as limit of sums:

\[\int_1^3 \left( 3 x^2 + 1 \right)dx\]

Evaluate `int_1^4 ( 1+ x +e^(2x)) dx` as limit of sums.


If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is


The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×