मराठी

Evaluate the following: d∫π3π21+cosx(1-cosx)52 dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`

बेरीज

उत्तर

Let I = `int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2)  "d"x`

= `int_(pi/3)^(pi/2) sqrt(2cos^2  x/2)/(2sin^2  x/2)^(5/2)  "d"x`

= `int_(pi/3)^(pi/2) (sqrt(2) cos  x/2)/((2)^(5/2) sin^5   x/2)  "d"x`

= `1/4 int_(pi/3)^(pi/2)  (cos  x/2)/(sin^5  x /2)  "d"x`

Put `sin  x/2` = t

⇒ `1/2 cos  x/2 "d"x` = dt

⇒ `cos  x/2 "d"x` = 2dt

Changing the limits, we have

When x = `pi/3`

`sin  pi/6` = t

∴ t = `1/2`

When x = `pi/2`

`sin  pi/4` = t

∴ t = `1/sqrt(2)`

∴ I = `1/4 xx 2 int_(1/2)^(1/sqrt(2)) "dt"/"t"^5`

= `1/2 xx (- 1/4) ["t"^-4]_(1/2)^(1/sqrt(2))`

= `- 1/8 [1/"t"^4]_(1/2)^(1/sqrt(2))`

= ` 1/8 [1/((1/sqrt(2))^4 - (1/(1/2))^4)]`

= `- 1/8 [4 - 16]`

= `- 1/8 xx (-12)`

= `3/2`

Hence, I = `3/2`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 41 | पृष्ठ १६६

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Evaluate the following definite integrals as limit of sums.

`int_a^b x dx`


Evaluate the following definite integrals as limit of sums. 

`int_2^3 x^2 dx`


Evaluate the definite integral:

`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`


Evaluate the definite integral:

`int_0^(pi/2) sin 2x tan^(-1) (sinx) dx`


Evaluate the definite integral:

`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`


Prove the following:

`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`


`int (cos 2x)/(sin x + cos x)^2dx` is equal to ______.


If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.


Choose the correct answers The value of `int_0^1 tan^(-1)  (2x -1)/(1+x - x^2)` dx is 

(A) 1

(B) 0

(C) –1

(D) `pi/4`


Evaluate : `int_1^3 (x^2 + 3x + e^x) dx` as the limit of the sum.


` ∫  log x / x  dx `
 
 
 

\[\int\frac{\sin^3 x}{\sqrt{\cos x}} dx\]

\[\int\frac{1}{x} \left( \log x \right)^2 dx\]


\[\int\frac{\sin x}{\left( 1 + \cos x \right)^2} dx\]

 


\[\text{ ∫  cosec x  log}      \left( \text{cosec x} - \cot x \right) dx\]

\[\int x^3 \sin \left( x^4 + 1 \right) dx\]

\[\int\log x\frac{\text{sin} \left\{ 1 + \left( \log x \right)^2 \right\}}{x} dx\]

\[\int\frac{1}{x^2} \cos^2 \left( \frac{1}{x} \right) dx\]

\[\int\frac{1}{x\sqrt{x^4 - 1}} dx\]

\[\int4 x^3 \sqrt{5 - x^2} dx\]

If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.


Evaluate the following:

`int_0^1 (x"d"x)/sqrt(1 + x^2)`


Evaluate the following:

`int_0^pi x sin x cos^2x "d"x`


The value of `int_(-pi)^pi sin^3x cos^2x  "d"x` is ______.


Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is


The limit of the function defined by `f(x) = {{:(|x|/x",", if x ≠ 0),(0",", "otherwisw"):}`


What is the derivative of `f(x) = |x|` at `x` = 0?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×