Advertisements
Advertisements
प्रश्न
उत्तर
\[\int 4 x^3 \sqrt{5 - x^2} dx\]
\[ = 4\int x^2 \times x \sqrt{5 - x^2} \text{ dx }\]
\[\text{Let 5} - x^2 = t \]
\[ \Rightarrow x^2 = 5 - t\]
\[ \Rightarrow 2x = - \frac{dt}{dx}\]
\[ \Rightarrow \text{x dx} = - \frac{dt}{2}\]
\[Now, 4\int x^2 \times x \sqrt{5 - x^2} \text{ dx }\]
\[ = \frac{4}{- 2} \int\left( 5 - t \right) . \sqrt{t} \text{ dt } \]
\[ = - 2\int5 t^\frac{1}{2} + 2 \int t^\frac{3}{2} \text{ dt }\]
\[ = - 10 \left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + 2 \left[ \frac{t^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + C\]
\[ = - \frac{20}{3} t^\frac{3}{2} + \frac{4}{5} t^\frac{5}{2} + C\]
\[ = - \frac{20}{3} \left( 5 - x^2 \right)^\frac{3}{2} + \frac{4}{5} \left( 5 - x^2 \right)^\frac{5}{2} + C\]
APPEARS IN
संबंधित प्रश्न
Evaluate `int_(-1)^2(e^3x+7x-5)dx` as a limit of sums
Evaluate the following definite integrals as limit of sums.
`int_2^3 x^2 dx`
Evaluate the following definite integrals as limit of sums `int_(-1)^1 e^x dx`
Evaluate the definite integral:
`int_0^(pi/2) (cos^2 x dx)/(cos^2 x + 4 sin^2 x)`
Evaluate the definite integral:
`int_(pi/6)^(pi/3) (sin x + cosx)/sqrt(sin 2x) dx`
Evaluate the definite integral:
`int_0^1 dx/(sqrt(1+x) - sqrtx)`
Evaluate the definite integral:
`int_0^(pi/4) (sin x + cos x)/(9+16sin 2x) dx`
Evaluate the definite integral:
`int_1^4 [|x - 1|+ |x - 2| + |x -3|]dx`
Prove the following:
`int_0^1 xe^x dx = 1`
Prove the following:
`int_(-1)^1 x^17 cos^4 xdx = 0`
Prove the following:
`int_0^(pi/2) sin^3 xdx = 2/3`
Prove the following:
`int_0^(pi/4) 2 tan^3 xdx = 1 - log 2`
`int dx/(e^x + e^(-x))` is equal to ______.
If f (a + b - x) = f (x), then `int_a^b x f(x )dx` is equal to ______.
\[\int\frac{1}{x} \left( \log x \right)^2 dx\]
Evaluate the following integral:
Evaluate the following integrals as limit of sums:
\[\int\frac{\sqrt{\tan x}}{\sin x \cos x} dx\]
Evaluate:
`int (sin"x"+cos"x")/(sqrt(9+16sin2"x")) "dx"`
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is
Left `f(x) = {{:(1",", "if x is rational number"),(0",", "if x is irrational number"):}`. The value `fof (sqrt(3))` is
What is the derivative of `f(x) = |x|` at `x` = 0?
`lim_(x -> 0) (xroot(3)(z^2 - (z - x)^2))/(root(3)(8xz - 4x^2) + root(3)(8xz))^4` is equal to
`lim_(n→∞){(1 + 1/n^2)^(2/n^2)(1 + 2^2/n^2)^(4/n^2)(1 + 3^2/n^2)^(6/n^2) ...(1 + n^2/n^2)^((2n)/n^2)}` is equal to ______.
`lim_(n rightarrow ∞)1/2^n [1/sqrt(1 - 1/2^n) + 1/sqrt(1 - 2/2^n) + 1/sqrt(1 - 3/2^n) + ...... + 1/sqrt(1 - (2^n - 1)/2^n)]` is equal to ______.