मराठी

∫ X 5 √ 1 + X 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]
बेरीज

उत्तर

\[\int\frac{x^5 dx}{\sqrt{1 + x^3}}\]
\[ = \int\frac{x^3 . x^2 dx}{\sqrt{1 + x^3}}\]
\[\text{Let 1} + x^3 = t \]
\[ \Rightarrow x^3 = t - 1\]
\[ \Rightarrow 3 x^2 = \frac{dt}{dx}\]
\[ \Rightarrow \text{x^2 dx} = \frac{dt}{3}\]
` Now,∫  {x^3 . x^2     dx}/{\sqrt{1 + x^3}}`
\[ = \frac{1}{3}\int\frac{\left( t - 1 \right)}{\sqrt{t}} dt\]
\[ = \frac{1}{3}\int\left( \sqrt{t} - \frac{1}{\sqrt{t}} \right)dt\]
\[ = \frac{1}{3} \int\left( t^\frac{1}{2} - t^{- \frac{1}{2}} \right)dt\]
\[ = \frac{1}{3}\left[ \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1} - \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + C\]
\[ = \frac{1}{3}\left[ \frac{2}{3} t^\frac{3}{2} - 2\sqrt{t} \right] + C\]
\[ = \frac{2}{9} \left( 1 + x^3 \right)^\frac{3}{2} - \frac{2}{3} \left( 1 + x^3 \right)^\frac{1}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.09 [पृष्ठ ५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.09 | Q 68 | पृष्ठ ५९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \tan^3 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×