मराठी

∫ 1 ( 7 X − 5 ) 3 + 1 √ 5 X − 4 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]
बेरीज

उत्तर

\[\int\left[ \frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} \right]dx\]
\[ = \int\left[ \left( 7x - 5 \right)^{- 3} + \left( 5x - 4 \right)^{- \frac{1}{2}} \right]dx\]
\[ = \frac{\left( 7x - 5 \right)^{- 3 + 1}}{7\left( - 3 + 1 \right)} + \frac{\left( 5x - 4 \right)^{- \frac{1}{2} + 1}}{5\left( - \frac{1}{2} + 1 \right)} + C\]
\[ = \frac{\left( 7x - 5 \right)^{- 2}}{- 14} + \frac{2}{5} \left( 5x - 4 \right)^\frac{1}{2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.03 | Q 2 | पृष्ठ २३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\frac{\left( x + 1 \right) e^x}{\cos^2 \left( x e^x \right)} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


` ∫  sec^6   x  tan    x   dx `

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


`int"x"^"n"."log"  "x"  "dx"`

\[\int\cos\sqrt{x}\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int x \cos^3 x\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×