Advertisements
Advertisements
प्रश्न
`int"x"^"n"."log" "x" "dx"`
बेरीज
उत्तर
`int"x"^"n"."log" "x" "dx"`
= `int"log" "x" "x"^"n" "dx"`
`int"u"."v" "dx" = "u" int "v" "dx" - int ("du"/"dx") [int "v dx"] "dx"`
= `"log x" int "x"^"n" "dx" - int ["d"/"dx" ("log x")int "x"^"n" "dx"] "dx"`
= `"log x" xx ("x"^("n" + 1))/("n" + 1) - int 1/"x".("x"^("n" + 1))/("n" + 1) "dx"`
= `("x"^("n" + 1) "log x")/("n" + 1) - 1/("n" + 1) int"x"^"n" "dx"`
= `("x"^("n" + 1) "log x")/("n" + 1) - ("x"^("n" + 1))/("n" + 1)^2 + "C"`
= `("x"^("n" + 1) "log x")/("n" + 1) ["log x" - 1/("n" + 1)] + "C"`
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
` ∫ x {tan^{- 1} x^2}/{1 + x^4} dx`
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
` ∫ sec^6 x tan x dx `
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int x^2 \text{ cos x dx }\]
\[\int \log_{10} x\ dx\]
\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]
\[\int \cos^3 \sqrt{x}\ dx\]
\[\int x \cos^3 x\ dx\]
\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]
\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{x}\ dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx}\]
\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]
\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
Find: `int (3x +5)/(x^2+3x-18)dx.`