Advertisements
Advertisements
प्रश्न
\[\int x \cos^2 x\ dx\]
बेरीज
उत्तर
\[\int x \cos^2 x dx\]
` " Taking x as the first function and cos"^2 x " as the second function ." `
\[ = x\int\frac{1 + \cos 2x}{2}dx - \int\left\{ \frac{d}{dx}\left( x \right)\int\frac{1 + \cos 2x}{2}dx \right\}dx\]
\[ = \frac{x}{2}\left[ x + \frac{\sin2x}{2} \right] - \int\frac{1}{2}\left( x + \frac{\sin2x}{2} \right)dx\]
\[ = \frac{x}{2}\left[ x + \frac{\sin2x}{2} \right] - \left[ \frac{x^2}{4} - \frac{\cos2x}{8} \right] + C\]
\[ = \frac{x^2}{2} + \frac{x \sin2x}{2} - \frac{x^2}{4} + \frac{\cos2x}{8} + C\]
\[ = \frac{x^2}{4} + \frac{x \sin2x}{2} + \frac{\cos2x}{8} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec } {x }- \cot x} dx\]
\[\int\frac{1}{1 + \cos 2x} dx\]
\[\int \left( a \tan x + b \cot x \right)^2 dx\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{x^2 + x + 5}{3x + 2} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{\sec^2 x}{\tan x + 2} dx\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
\[\int\frac{1}{1 + \sqrt{x}} dx\]
\[\int 5^{x + \tan^{- 1} x} . \left( \frac{x^2 + 2}{x^2 + 1} \right) dx\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]
\[\int\frac{1}{3 + 4 \cot x} dx\]
\[\int\frac{1}{4 + 3 \tan x} dx\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int x^2 \text{ cos x dx }\]
\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]
\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]
\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{ dx }\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]
\[\int x \sec^2 2x\ dx\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]