Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{We have}, \]
\[I = \int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right)dx\]
\[ = \int e^{2x} \left( \frac{1}{1 + \cos 2x} + \frac{\sin 2x}{1 + \cos 2x} \right)dx\]
\[ = \int e^{2x} \left( \frac{1}{2 \cos^2 x} + \frac{2 \sin x \cos x}{2 \cos^2 x} \right)dx\]
\[ = \int e^{2x} \left( \frac{\sec^2 x}{2} + \tan x \right)dx\]
\[\text{ Let e}^{2x} \tan x = t\]
\[ \Rightarrow \left( e^{2x} \sec^2 x + 2 e^{2x} \tan x \right)dx = dt\]
\[ = \left[ \frac{e^{2x} \sec^2 x}{2} + e^{2x} \tan x \right]dx = \frac{dt}{2}\]
\[ \therefore I = \int \frac{dt}{2}\]
\[ = \frac{t}{2} + C\]
\[ = \frac{e^{2x} \tan x}{2} + C\]
APPEARS IN
संबंधित प्रश्न
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
Integrate the following integrals:
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`