मराठी

∫ X ( X 2 + 4 ) √ X 2 + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
बेरीज

उत्तर

\[\text{ We  have, }\]
\[I = \int \frac{x dx}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}}\]
\[\text{ Putting}\ x^2 = t\]
\[ \Rightarrow 2x \text{ dx }= dt\]
\[ \Rightarrow x \text{ dx } = \frac{dt}{2}\]
\[ \therefore I = \frac{1}{2}\int \frac{dt}{\left( t + 4 \right) \sqrt{t + 1}}\]
\[\text{ Again  Putting } t + 1 = p^2 \]
\[ \Rightarrow t = p^2 - 1\]
\[ \Rightarrow dt = 2p \text{ dp }\]
\[I = \frac{1}{2}\int \frac{2p \text{ dp }}{\left( p^2 - 1 + 4 \right)p}\]
\[ = \int \frac{dp}{p^2 + 3}\]
\[ = \int\frac{dp}{p^2 + \left( \sqrt{3} \right)^2}\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{p}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \frac{\sqrt{t + 1}}{\sqrt{3}} \right) + C\]
\[ = \frac{1}{\sqrt{3}} \tan^{- 1} \left( \sqrt{\frac{x^2 + 1}{3}} \right) + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.32 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.32 | Q 11 | पृष्ठ १७६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int x^3 \sin x^4 dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int\sqrt{3 - x^2} \text{ dx}\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int \cot^4 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×