Advertisements
Advertisements
प्रश्न
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
बेरीज
उत्तर
\[\int\left( \frac{2x + 3}{\left( x - 1 \right)^2} \right)dx\]
\[ = \int\left[ \frac{2x - 2 + 2 + 3}{\left( x - 1 \right)^2} \right]dx\]
\[ = \int\left[ \frac{2\left( x - 1 \right) + 5}{\left( x - 1 \right)^2} \right]dx\]
\[ = 2\int\frac{dx}{\left( x - 1 \right)} + 5\int \left( x - 1 \right)^{- 2} dx\]
\[ = \text{2 ln }\left| x - 1 \right| + 5\left[ \frac{\left( x - 1 \right)^{- 2 + 1}}{- 2 + 1} \right] + C\]
\[ = \text{2 ln }\left| x - 1 \right| - \frac{5}{x - 1} + C\]
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
\[\int\frac{1 - \sin x}{x + \cos x} dx\]
\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]
\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]
\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
` ∫ \sqrt{tan x} sec^4 x dx `
\[\int\frac{1}{x^2 - 10x + 34} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]
\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]
\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]
\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]
\[\int\frac{1}{1 - \tan x} \text{ dx }\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int e^x \left( \frac{1 + \sin x}{1 + \cos x} \right) dx\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int x\sqrt{x^4 + 1} \text{ dx}\]
\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{ dx }\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]
\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]
\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]