मराठी

∫ tan − 1 √ 1 − x 1 + x dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]
बेरीज

उत्तर

\[\text{We have}, \]

\[I = \int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\text{ Putting  x }= \cos \theta\]

\[ \Rightarrow dx = - \sin \text{  θ  dθ}\]

\[ \therefore I = \int \tan^{- 1} \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} \left( - \sin \text{  θ  dθ} \right)\]

\[ = \int \tan^{- 1} \sqrt{\frac{2 \sin^2 \frac{\theta}{2}}{2 \cos^2 \frac{\theta}{2}}} \left( - \sin \theta \right)d\theta\]

\[ = \int \tan^{- 1} \left( \tan \frac{\theta}{2} \right) \left( - \sin \theta \right)d\theta\]

\[ = - \frac{1}{2}\int\theta \sin \theta d\theta\]

\[\text{Considering} \text{  θ  as first function and} \sin \text{  θ   as second function}\]

\[I = - \frac{1}{2}\left[ \theta\left( - \cos \theta \right) - \int1\left( - \cos \theta \right)d\theta \right]\]

\[ = - \frac{1}{2}\left( \theta\left( - \cos \theta \right) + \int\cos \theta d\theta \right)\]

\[ = - \frac{1}{2}\left( - \theta \cos \theta + \sin \theta \right) + C\]

\[ = - \frac{1}{2}\left[ - \theta \cos \theta + \sqrt{1 - \cos^2 \theta} \right] + C\]

\[ = - \frac{1}{2}\left[ - \cos^{- 1} x \times x + \sqrt{1 - x^2} \right] + C\]

\[ = \frac{1}{2}\left[ x \cos^{- 1} x - \sqrt{1 - x^2} \right] + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 112 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

` ∫ {"cosec"   x }/ { log  tan   x/2 ` dx 

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{  dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x^2 \text{ cos x dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x^2 \sin^2 x\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int\sqrt{1 + 2x - 3 x^2}\text{  dx } \]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×