Advertisements
Advertisements
प्रश्न
उत्तर
\[\int\frac{\cos \left( 2 x \right) \cdot dx}{\sqrt{\sin^2 2x + 8}}\]
\[\text{ let } \text{ sin } \left( 2x \right) = t\]
\[ \Rightarrow \text{ cos }\left( 2x \right) \times 2 \cdot dx = dt\]
\[ \Rightarrow \text{ cos }\left( 2x \right) \cdot dx = \frac{dt}{2}\]
\[Now, \int\frac{\text{ cos } \left( 2 x \right) \cdot dx}{\sqrt{\sin^2 2x + 8}} \]
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{t^2 + \left( 2\sqrt{2} \right)^2}}\]
\[ = \frac{1}{2}\text{ log }\left| t + \sqrt{t^2 + 8} \right| + C\]
\[ = \frac{1}{2} \text{ log }\left| \text{ sin }\left( 2x \right) + \sqrt{\text{ sin }^2 \left(\text{ 2x }\right) + 8} \right| + C\]
APPEARS IN
संबंधित प्रश्न
\[\int \tan^2 \left( 2x - 3 \right) dx\]
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
Evaluate the following integral: