मराठी

∫ Cos 2 X √ Sin 2 2 X + 8 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
बेरीज

उत्तर

\[\int\frac{\cos \left( 2 x \right) \cdot dx}{\sqrt{\sin^2 2x + 8}}\]
\[\text{ let } \text{ sin } \left( 2x \right) = t\]
\[ \Rightarrow \text{ cos }\left( 2x \right) \times 2 \cdot dx = dt\]
\[ \Rightarrow \text{ cos }\left( 2x \right) \cdot dx = \frac{dt}{2}\]
\[Now, \int\frac{\text{ cos } \left( 2 x \right) \cdot dx}{\sqrt{\sin^2 2x + 8}} \]
\[ = \frac{1}{2}\int\frac{dt}{\sqrt{t^2 + \left( 2\sqrt{2} \right)^2}}\]
\[ = \frac{1}{2}\text{ log }\left| t + \sqrt{t^2 + 8} \right| + C\]
\[ = \frac{1}{2} \text{ log }\left| \text{ sin }\left( 2x \right) + \sqrt{\text{ sin }^2 \left(\text{  2x }\right) + 8} \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.18 [पृष्ठ ९९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.18 | Q 9 | पृष्ठ ९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{\sec^2 x}{1 - \tan^2 x} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \cot^5 x\ dx\]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×