मराठी

Evaluate the Following Integral: ∫ X 2 ( X 2 + a 2 ) ( X 2 + B 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
बेरीज

उत्तर

\[\text{Let }I = \int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]
We express
\[\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)} = \frac{A}{x^2 + a^2} + \frac{B}{x^2 + b^2}\]
\[ \Rightarrow x^2 = A\left( x^2 + b^2 \right) + B\left( x^2 + a^2 \right)\]
Equating the coefficients of `x^2` and constants, we get
\[1 = A + B\text{ and }0 = b^2 A + a^2 B\]
\[or A = - \frac{a^2}{b^2 - a^2}\text{ and }B = \frac{b^2}{b^2 - a^2}\]
\[ \therefore I = \int\left( \frac{- \frac{a^2}{b^2 - a^2}}{x^2 + a^2} + \frac{\frac{b^2}{b^2 - a^2}}{x^2 + b^2} \right)dx\]
\[ = - \frac{a^2}{b^2 - a^2}\int\frac{1}{x^2 + a^2}dx + \frac{b^2}{b^2 - a^2}\int\frac{1}{x^2 + b^2} dx\]
\[ = - \frac{a}{b^2 - a^2} \tan^{- 1} \frac{x}{a} + \frac{b}{b^2 - a^2} \tan^{- 1} \frac{x}{b} + c\]
\[\text{Hence, }\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx = - \frac{a}{b^2 - a^2} \tan^{- 1} \frac{x}{a} + \frac{b}{b^2 - a^2} \tan^{- 1} \frac{x}{b} + c\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.30 | Q 58 | पृष्ठ १७७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{1 + \cos x}{1 - \cos x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int e^\sqrt{x} \text{ dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{x^2 - 4x + 3} \text{  dx }\]

 


\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int \sec^6 x\ dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×