मराठी

∫ Cos 4 X − Cos 2 X Sin 4 X − Sin 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]
बेरीज

उत्तर

\[\int\left( \frac{\cos4x - \cos2x}{\sin4x - \sin2x} \right)dx\]
\[ = \int\frac{- 2\sin\left( \frac{4x + 2x}{2} \right)\sin\left( \frac{4x - 2x}{2} \right)}{2\cos\left( \frac{4x + 2x}{2} \right)\sin\left( \frac{4x - 2x}{2} \right)}dx \left[ \because \cos A - \cos B = - 2\sin \left( \frac{A + B}{2} \right)\sin \left( \frac{A - B}{2} \right) \text{and} \sin A - \sin B = 2\cos \left( \frac{A + B}{2} \right)\sin \left( \frac{A - B}{2} \right) \right]\]
\[ = - \int\frac{\sin 3x}{\cos 3x}dx\]
\[ = - \int\tan 3x dx\]
\[ = \frac{- \text{ln }\left| \sec 3x \right|}{3} + C\]
\[ = \frac{1}{3} \text{ln} \left( \left| \text{sec 3x} \right| \right)^{- 1} + C\]
\[ = \frac{1}{3} \text{ln }\left| \cos 3x \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.08 | Q 30 | पृष्ठ ४८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

If f' (x) = 8x3 − 2xf(2) = 8, find f(x)


\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

 
` ∫  x tan ^2 x dx 

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×