मराठी

∫ ( 1 − X 2 ) X ( 1 − 2 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
बेरीज

उत्तर

\[\text{ We have}, \]
\[I = \int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)}\text{ dx }\]
\[ = \int\left( \frac{- x^2 + 1}{- 2 x^2 + x} \right)dx\]
\[ = ∫\frac{1}{2}dx + \int\left( \frac{1 - \frac{x}{2}}{- 2 x^2 + x} \right) d x\]
\[ = \frac{1}{2}\int dx + \frac{1}{2}\int\frac{2 - x}{- 2 x^2 + x}dx\]
\[ = \frac{1}{2}\left[ \int dx + \int\frac{2 - x}{- 2 x^2 + x}dx \right]\]
\[ = \frac{1}{2}\left[ I_1 + I_2 \right] \left( \text{ say }\right)\]
\[\text{ where }I_1 = \int\ dx\ \text{and}\ I_2 = \int\frac{2 - x}{- 2 x^2 + x}dx\]
\[Now, I_1 = \int dx\]
\[ = x + C_1 \]
\[ I_2 = \int\frac{2 - x}{- 2 x^2 + x}dx\]
\[\text{ Let 2 }- x = \text{ A }\frac{d}{dx} \left( - 2 x^2 + x \right) + B\]
\[ \Rightarrow 2 - x = A \left( - 4x + 1 \right) + B\]
\[ \Rightarrow 2 - x = - 4Ax + A + B\]

Comparing coefficients of like terms

\[- 1 = - 4 A\]
\[ \Rightarrow A = \frac{1}{4}\]
\[\text{ and } A + B = 2\]
\[ \Rightarrow \frac{1}{4} + B = 2\]
\[ \Rightarrow B = 2 - \frac{1}{4}\]
\[ = \frac{8 - 1}{4}\]
\[ = \frac{7}{4}\]

\[\therefore \int\frac{2 - x}{- 2 x^2 + x}dx = \int\frac{\frac{1}{4}\left( - 4x + 1 \right) + \frac{7}{4}}{- 2 x^2 + x}dx\]
\[ = \int\frac{\frac{1}{4}\left( - 4x + 1 \right)}{- 2 x^2 + x}dx + \int\frac{\frac{7}{4}}{- 2 x^2 + x}dx\]
\[ = \frac{1}{4}\text{ log } \left| - 2 x^2 + x \right| + \frac{7}{4}\int\frac{1}{- 2\left( x^2 - \frac{x}{2} + \frac{1}{16} - \frac{1}{16} \right)}dx\]
\[ = \frac{1}{4}\text{ log } \left| - 2 x^2 + x \right| - \frac{7}{8}\int\frac{1}{\left\{ \left( x - \frac{1}{4} \right)^2 - \left( \frac{1}{4} \right)^2 \right\}}dx\]
\[ = \frac{1}{4}\text{ log } \left| x\left( - 2x + 1 \right) \right| - \frac{7}{8} \times \frac{1}{2 \times \frac{1}{4}}\text{ log }\left| \frac{x - \frac{1}{4} - \frac{1}{4}}{x - \frac{1}{4} + \frac{1}{4}} \right| + C_2 \]
\[ = \frac{1}{4}\text{ log } \left| x \right| + \frac{1}{4}\text{ log }\left| - 2x + 1 \right| - \frac{7}{4}\log\left| \frac{x - \frac{1}{2}}{x} \right| + C_2 \]
\[ = \frac{1}{4}\text{ log } \left| x \right| + \frac{1}{4}\text{ log } \left| - 2x + 1 \right| - \frac{7}{4}\text{ log } \left| x - \frac{1}{2} \right| + \frac{7}{4}\text{ log } \left| x \right| + C_2 \]
\[ = 2 \text{ log } \left| x \right| + \frac{1}{4}\text{ log } \left| - 2x + 1 \right| - \frac{7}{4}\text{ log } \left| 2x - 1 \right| + C_3 , \text{ where }C_3 = C_2 + \frac{7}{4}\text{ log } 2\]
\[ = 2 \text{ log } \left| x \right| + \frac{1}{4}\text{ log }\left| - 2x + 1 \right| - \frac{7}{4}\text{ log } \left| 1 - 2x \right| + C_3 \]
\[ = 2 \text{ log } \left| x \right| - \frac{3}{2}\text { log } \left| 1 - 2x \right| + C_3 \]
\[\text{ Thus }, I = \frac{1}{2}\left[ x + C_1 + 2 \text{ log } \left| x \right| - \frac{3}{2}\text{ log } \left| 1 - 2x \right| + C_3 \right]\]
\[ = \frac{1}{2}x + \text{ log } \left| x \right| - \frac{3}{4}\text{ log } \left| 1 - 2x \right| + C, \text{ where  C } = \frac{1}{2}\left[ C_1 + C_3 \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.2 [पृष्ठ १०६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.2 | Q 3 | पृष्ठ १०६

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int \cos^5 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

Evaluate the following integrals:

\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \tan x} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int \cos^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×