मराठी

∫ Log X X N D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\log x}{x^n}\text{  dx }\]
बेरीज

उत्तर

`  ∫   1/x^n   log  x   dx `
`  " Taking  log x as the first function and "{1}/ {x^n}"  as the second function  " ` 
\[ = \log x\int\frac{1}{x^n}dx - \int\left( \frac{d}{dx}\log x\int\frac{1}{x^n}dx \right)dx\]
\[ = \log x\left( \frac{x^{- n + 1}}{- n + 1} \right) - \int\frac{1}{x}\left( \frac{x^{- n + 1}}{- n + 1} \right)dx\]
\[ = \log x\left( \frac{x^{- n + 1}}{- n + 1} \right) - \int\frac{x^{- n}}{- n + 1}dx\]
\[ = \log x\left( \frac{x^{- n + 1}}{- n + 1} \right) - \frac{x^{- n + 1}}{\left( - n + 1 \right)^2} + C\]
\[ = \log x\left( \frac{x^{1 - n}}{1 - n} \right) - \frac{x^{1 - n}}{\left( 1 - n \right)^2} + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 15 | पृष्ठ १३३

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int {cosec}^3 x\ dx\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1}{2 + \cos x} \text{ dx }\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×