Advertisements
Advertisements
प्रश्न
उत्तर
` ∫ 1/x^n log x dx `
` " Taking log x as the first function and "{1}/ {x^n}" as the second function " `
\[ = \log x\int\frac{1}{x^n}dx - \int\left( \frac{d}{dx}\log x\int\frac{1}{x^n}dx \right)dx\]
\[ = \log x\left( \frac{x^{- n + 1}}{- n + 1} \right) - \int\frac{1}{x}\left( \frac{x^{- n + 1}}{- n + 1} \right)dx\]
\[ = \log x\left( \frac{x^{- n + 1}}{- n + 1} \right) - \int\frac{x^{- n}}{- n + 1}dx\]
\[ = \log x\left( \frac{x^{- n + 1}}{- n + 1} \right) - \frac{x^{- n + 1}}{\left( - n + 1 \right)^2} + C\]
\[ = \log x\left( \frac{x^{1 - n}}{1 - n} \right) - \frac{x^{1 - n}}{\left( 1 - n \right)^2} + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int {cosec}^4 2x\ dx\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]