मराठी

∫ Cos X 1 4 − Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I } = \int\frac{\cos x}{\frac{1}{4} - \cos^2 x}dx\]

\[ = \int\frac{\cos x}{\frac{1}{4} - \left( 1 - \sin^2 x \right)}dx\]

\[ = \int\frac{\cos x}{\sin^2 x - \frac{3}{4}}dx\]

\[ = \int\frac{\cos x}{\sin^2 x - \left( \frac{\sqrt{3}}{2} \right)^2}dx\]

\[\text{ Putting  sin x = t}\]

\[ \Rightarrow \text{ cos  x  dx = dt }\]

\[ \therefore I = \int\frac{1}{t^2 - \left( \frac{\sqrt{3}}{2} \right)^2}dt\]

\[ = \frac{1}{2 \times \frac{\sqrt{3}}{2}} \text{ ln  }\left| \frac{t - \frac{\sqrt{3}}{2}}{t + \frac{\sqrt{3}}{2}} \right| + C\]

\[ = \frac{1}{\sqrt{3}} \text{ ln } \left| \frac{2t - \sqrt{3}}{2t + \sqrt{3}} \right| + C\]

\[ = \frac{1}{\sqrt{3}} \text{ ln } \left| \frac{2 \sin x - \sqrt{3}}{2 \sin x + \sqrt{3}} \right| + C................ \left[ \because t = \sin x \right]\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Revision Excercise | Q 63 | पृष्ठ २०४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]

\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

\[\int2 x^3 e^{x^2} dx\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \frac{x - 1}{\left( x + 1 \right)^3} \text{ dx }\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int \cos^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int x\sqrt{1 + x - x^2}\text{  dx }\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×