English

∫ Cos X 1 4 − Cos 2 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int\frac{\cos x}{\frac{1}{4} - \cos^2 x}dx\]

\[ = \int\frac{\cos x}{\frac{1}{4} - \left( 1 - \sin^2 x \right)}dx\]

\[ = \int\frac{\cos x}{\sin^2 x - \frac{3}{4}}dx\]

\[ = \int\frac{\cos x}{\sin^2 x - \left( \frac{\sqrt{3}}{2} \right)^2}dx\]

\[\text{ Putting  sin x = t}\]

\[ \Rightarrow \text{ cos  x  dx = dt }\]

\[ \therefore I = \int\frac{1}{t^2 - \left( \frac{\sqrt{3}}{2} \right)^2}dt\]

\[ = \frac{1}{2 \times \frac{\sqrt{3}}{2}} \text{ ln  }\left| \frac{t - \frac{\sqrt{3}}{2}}{t + \frac{\sqrt{3}}{2}} \right| + C\]

\[ = \frac{1}{\sqrt{3}} \text{ ln } \left| \frac{2t - \sqrt{3}}{2t + \sqrt{3}} \right| + C\]

\[ = \frac{1}{\sqrt{3}} \text{ ln } \left| \frac{2 \sin x - \sqrt{3}}{2 \sin x + \sqrt{3}} \right| + C................ \left[ \because t = \sin x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 63 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

\[\int x \text{ sin 2x dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int {cosec}^3 x\ dx\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x + 1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×