English

∫ 1 1 + 2 Cos X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
Sum

Solution

\[\text{ Let  I } = \int\frac{1}{1 + 2 \cos x}dx \]

\[\text{ Putting cos  x } = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}\]

\[ \therefore I = \int\frac{1}{1 + 2 \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right)}dx\]

\[ = \int\frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{1 + \tan^2 \frac{x}{2} + 2 - 2 \tan^2 \frac{x}{2}}dx\]

\[ = \int\frac{\sec^2 \frac{x}{2}}{3 - \tan^2 \frac{x}{2}}dx\]

\[\text{  Putting  tan }\frac{x}{2} = t\]

\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right) \text{ dx} = dt\]

\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right) \cdot dx = 2dt\]

\[ \therefore I = \int\frac{2}{3 - t^2} \text{  dt }\]

\[ = 2\int\frac{1}{\left( \sqrt{3} \right)^2 - t^2}dt\]

\[ = 2 \times \frac{1}{2\sqrt{3}} \text{ ln }\left| \frac{\sqrt{3} + t}{\sqrt{3} + t} \right| + C ........\left[ \because \int\frac{1}{a^2 - x^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{a + x}{a - x} \right| + C \right]\]

\[ = \frac{1}{\sqrt{3}} \text{ ln } \left| \frac{\sqrt{3} + \tan\frac{x}{2}}{\sqrt{3} - \tan \frac{x}{2}} \right| + C...................\left[ \because t = \tan \frac{x}{2} \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 64 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{1}{\sqrt{x} + \sqrt[4]{x}}dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \sin^7 x  \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int\frac{1}{4 + 3 \tan x} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{\text{ sin} \left( x - a \right) \text{ sin } \left( x - b \right)} \text{ dx }\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×