Advertisements
Advertisements
Question
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
Sum
Solution
\[\text{ Let I} = \int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[ = 2 \int 1_{II} . \tan^{- 1}_I \text{ x dx } \left[ \because \cos {}^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) = 2 \tan^{- 1} x \right] \]
\[ = 2\left[ \tan^{- 1} x\int1\text{ dx } - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int1 \text{ dx }\right\}dx \right]\]
\[ = 2\left[ \tan^{- 1} x . x - \int\frac{1}{1 + x^2} \times\text{ x dx } \right]\]
\[ = 2 x \tan^{- 1} x - \int\frac{2x}{1 + x^2} \text{ dx }\]
\[\text{ Putting 1 }+ x^2 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \therefore I = 2x \tan^{- 1} x - \int \frac{dt}{t}\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| t \right| + C\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| 1 + x^2 \right| + C \left[ \because t = 1 + x^2 \right]\]
\[ = 2 \int 1_{II} . \tan^{- 1}_I \text{ x dx } \left[ \because \cos {}^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) = 2 \tan^{- 1} x \right] \]
\[ = 2\left[ \tan^{- 1} x\int1\text{ dx } - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int1 \text{ dx }\right\}dx \right]\]
\[ = 2\left[ \tan^{- 1} x . x - \int\frac{1}{1 + x^2} \times\text{ x dx } \right]\]
\[ = 2 x \tan^{- 1} x - \int\frac{2x}{1 + x^2} \text{ dx }\]
\[\text{ Putting 1 }+ x^2 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \therefore I = 2x \tan^{- 1} x - \int \frac{dt}{t}\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| t \right| + C\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| 1 + x^2 \right| + C \left[ \because t = 1 + x^2 \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{\tan x}{\sec x + \tan x} dx\]
\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
\[\int\frac{1}{x (3 + \log x)} dx\]
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{\cos^5 x}{\sin x} dx\]
\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` ∫ tan^5 x dx `
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]
\[\int\frac{x + 2}{2 x^2 + 6x + 5}\text{ dx }\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{ dx }\]
\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]
\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]
\[\int x \cos x\ dx\]
\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]
\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]
\[\int\sqrt{3 - 2x - 2 x^2} \text{ dx}\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]
\[\int\sqrt{\cot \text{θ} d } \text{ θ}\]
\[\int\frac{1}{\left( 1 + x^2 \right) \sqrt{1 - x^2}} \text{ dx }\]
` \int \text{ x} \text{ sec x}^2 \text{ dx is equal to }`
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int \tan^3 x\ dx\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{1}{\sec x + cosec x}\text{ dx }\]
\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]
\[\int \left( e^x + 1 \right)^2 e^x dx\]