मराठी

∫ Cos − 1 ( 1 − X 2 1 + X 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I} = \int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[ = 2 \int 1_{II} . \tan^{- 1}_I \text{ x dx } \left[ \because \cos {}^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) = 2 \tan^{- 1} x \right] \]
\[ = 2\left[ \tan^{- 1} x\int1\text{ dx } - \int\left\{ \frac{d}{dx}\left( \tan^{- 1} x \right)\int1 \text{ dx }\right\}dx \right]\]
\[ = 2\left[ \tan^{- 1} x . x - \int\frac{1}{1 + x^2} \times\text{  x dx } \right]\]
\[ = 2 x \tan^{- 1} x - \int\frac{2x}{1 + x^2} \text{ dx }\]
\[\text{ Putting 1 }+ x^2 = t\]
\[ \Rightarrow \text{ 2x dx } = dt\]
\[ \therefore I = 2x \tan^{- 1} x - \int \frac{dt}{t}\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| t \right| + C\]
\[ = 2x \tan^{- 1} x - \text{ ln }\left| 1 + x^2 \right| + C \left[ \because t = 1 + x^2 \right]\]
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.25 | Q 42 | पृष्ठ १३४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

\[\int \sin^{- 1} \sqrt{x} \text{ dx }\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + 1}{\left( 2x + 1 \right) \left( x^2 - 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x}{\left( x^2 + 2x + 2 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×