मराठी

∫ 8 Cot X + 1 3 Cot X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]
बेरीज

उत्तर

\[\text{ Let I} = \int\left( \frac{8 \cot x + 1}{3 \cot x + 2} \right)dx\]
\[ = \int\left( \frac{8 \frac{\cos x}{\sin x} + 1}{\frac{3 \cos x}{\sin x} + 2} \right)dx\]
\[ = \int\left( \frac{8 \cos x + \sin x}{3 \cos x + 2 \sin x} \right)dx\]
\[\text{ Now, let 8  cos x + sin x = A }\left( 3 \cos x + 2 \sin x \right) + B \left( - 3 \sin x + 2 \cos x \right) . . . (1) \]
\[ \Rightarrow 8 \cos x + \sin x = 3A \cos x + 2A \sin x - 3B \sin x + 2B \cos x \]
\[ \Rightarrow 8 \cos x + \sin x = \left( 3A + 2B \right) \cos x + \left( 2A - 3B \right) \sin x \]
\[\text{Equating the coefficients of like terms we get}, \]
\[2A - 3B = 1 . . . \left( 2 \right)\]
\[3A + 2B = 8 . . . \left( 3 \right)\]

Solving eq (2) and  eq (3) we get,
A = 2, B = 1
Thus, by substituting the values of A and B in eq (1) we get ,

\[I = \int\left[ \frac{2 \left( 3 \cos x + 2 \sin x \right) + 1\left( - 3 \sin x + 2 \cos x \right)}{\left( 3 \cos x + 2 \sin x \right)} \right]dx\]
\[ = 2\int\left( \frac{3 \cos x + 2 \sin x}{3 \cos x + 2 \sin x} \right)dx + \int\left( \frac{- 3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \right)dx\]
\[ = 2\int dx + \int\left( \frac{- 3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \right)dx\]
\[\text{ Putting   3 cos x + 2 sin x = t }\]
\[ \Rightarrow \left( \text{  - 3  sin x + 2 cos x} \right)dx = dt \]
\[ \therefore I = 2\int dx + \int\frac{1}{t}dt\]
\[ = 2x + \text{ ln }\left| t \right| + C\]
\[ = 2x + \text{ ln }\left| 3 \cos x + 2 \sin x \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Exercise 19.24 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Exercise 19.24 | Q 10 | पृष्ठ १२२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int {cosec}^3 x\ dx\]

\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int \sin^3 x \cos^4 x\ \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int {cosec}^4 2x\ dx\]


\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×